Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

Hardy Spaces Associated with Semigroups of Operators

This paper is a non exhaustive survey about Hardy spaces defined by semigroups of operators.

متن کامل

Bilinear Operators on Herz-type Hardy Spaces

The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on Rn are bounded from HK̇11 q1 × HK̇ α2,p2 q2 into HK̇ q if and only if they have vanishing moments up to a certain order dictated by the target space. Here HK̇ q are homogeneous Herz-type Hardy spaces with 1/p = 1/p1 +1/p2, 0 < pi ≤ ∞, 1/q = 1/q1 +1/q2, 1 < q1, q2 < ∞, 1 ≤ q < ∞, α = α1 + α2 a...

متن کامل

Hardy Spaces and Heat Kernel Regularity

In this article, we will be concerned with questions related to the boundedness of the Riesz transform on manifolds. Since the seminal work of Coulhon and Duong [4], who gave sufficient conditions on the heat kernel so that the Riesz transform is bounded on Lp for 1 < p ≤ 2, several authors have investigated both necessary and sufficient conditions for the boundedness of the Riesz transform on ...

متن کامل

localization operators on homogeneous spaces

let $g$ be a locally compact group, $h$ be a compact subgroup of $g$ and $varpi$ be a representation of the homogeneous space $g/h$ on a hilbert space $mathcal h$. for $psi in l^p(g/h), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $l_{psi,zeta} $ on $mathcal h$ and we show that it is a bounded operator. moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2015

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-015-1577-6